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ABSTRACT

The vertical discretization in a linearized baroclinic prediction model was

analyzed by comparing various finite element and finite difference solutions following

Jordan 11935). Modifications were made on Jordan's (1985) Galerkin finite element

approximation for two staggered grids. Comparisons were made with the unmodified

models (Jordan. 1935) and with finite difference approximations for the same two

staggered grids. The models were run with four experiments. Most of the oscillations

that occurred in the temperature profiles near the surface of the unmodified Galerkin

finite clement approximations disappeared following the modifications.
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1. INTRODUCTION

Most numerical weather prediction models use finite differences to accomplish

the vertical (iscretization even though they use finite difference, finite element, or

spectral. horizontal discretizations. The only exceptions are the Canadian regional and
hemispheric models (Staniforth and Daley, 1977 and 1979), which use finite elements in
the vertical. The successful numerical prediction of synoptic evolutions requires a

proper representation of the vertical variation of the predictive fields. Since smaller
scale features such as fronts (Hoskins and Bretherton, 1972 and Williams. 1967) and

the large scale planetary waves (Gall, 1976) are forced by energetic synoptic-scale

features, it follows that all predictive scales of motion may be sensitive to the vertical

discretizaticn used in the numerical models.

Most of the finite difference vertical discretizations use a staggered arrangement
of variables. It has been demonstrated that staggering of variables in the horizontal

(Winninghoff. 1968; Arakawa and Lamb, 1977 and Schoenstadt, 1980) improves
geostrophic adjustment and the response to small scale forcing. Most quasi-geostrophic

models (Charney and Phillips, 1953) use vertical staggering where the vertical motion
and the temperature are carried between the levels which carry horizontal velocity and

pressure. This arrangement will be referred to as grid B. Lorenz (1960) introduced a
different grid for the balance equations which was designed to conserve energy. This
arrangement places only the vertical velocity between the levels which carry the other

variables (horizontal velocity, pressure and temperature) and will be referred to as grid

A. Tokioka (1978) analyzed a number of vertical grids with linearized equations and
found that grid A has a computational mode in the temperature field. Arakawa (19

" compared baroclinic instability for grids A and B in the linearized quasi-geostrop...,.

equations. He found a false short wave instability for grid A which did not occur with

grid B. This problem is related to the computational mode in the temperature field.
Another difficulty with grid B is that the matrix which must be inverted to find the

O temperature from the pressure is singular. This is tpecially important for initialization.

Many operational primitive equation models use grid A for energy conservation.

The use of finite elements for the vertical discretization can be expected to give a

more accurate representation of vertical variations. The finite element method is a

10
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special case of the Galerkin procedure which represents the dependent variables with a

weigh-ed sum of basis functions that have a prescribed spatial structure. The finite

element method employs basis functions which are zero except in a limited region

where they are low-order polynomials. This method was developed in engineering
statics (see e.g.. Zienkiewicz, 1977) and it has been more recently applied to fluid

dynaiics and hydrology (see Gray and Pinder, 1976). The finite element method has

seen successfully applied to meteorological prediction with the shallow water equations
by Cu!len (1973), Hinsman (1975) and Staniforth and Mitchell (19 7. 197S). Cullen
i 9 73). Neta et al (19S6). and Neta and Williams (1986) demonstrated that finite

element formulations with piecewise linear basis functions are more accurate than

second order finite d'fferences.

Jordan (!9S5) compared six linear, baroclinic, vorticity-divergence equation

models using three grid schemes, grid A, grid B and an unstaggered grid. A
perturbation was found in the temperature fields of the Rossby wave experiment and

the mountain topography experiment in the finite element models using grids A and B

(Fig. 1.1).

The purpose of this study is to see if the perturbations noted in the Jordan study
could be fixed. A baroclinic instability experiment is made with a comparison of finite

element and finite difference models for grids A and B. The finite element models for

grids A and B are modified at the boundaries and the finite difference models for grids

A and B are left as they were except for the necessary modifications to run the
baroclinic instability experiment. The results of the modified models are compared

with the results of the unmodified models from Jordan (1985) for the Rossby wave
experiment, the mountain topography experiment and the diabatic heating experiment.

The experiments are described in Chapter III.

0
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II. MODEL DESCRIPTIONS

A. MODEL FEATURES

Jordan (19S5 developed six numerical models with several features to make easy

modifications for a wide range of experiments. A menu is added to each of the models

tc make the transition between four experiments simple. The user is able to prescribe

heating. mountain topography, velocity perturbation, or baroclinic experiments and the

model will make the prescribed changes in the variables governing these cases. Another

menu is added so that the user can prescribe the amount of printout desired from each

run. The models are written in modular structure using FORTRAN '77. There is

parallel construction between models. The subroutines used in one model are very

similar to those used in the other models. The models run quickly on an IBM-3033

, *mainframe; for example, a 96-hour forecast for a 12 layer finite element model uses less

than five seconds of computer processing time.

B. GOVERNING EQUATIONS

Each model approximates the same set of governing equations. The vorticity

equation (2.1), the divergence equation (2.2), the surface geopotential equation (2.3),

and the first law of thermodynamics (2.4) are the prognostic equations for the forecast

variables vorticity, divergence, surface geopotential and potential temperature. The

surface geopotential equation is the lower boundary condition on the vertical velocity.

The vertical coordinate Z = -ln(p'po) is used, but the non-Boussinesq terms

involving e-z are replaced by one. The prognostic equations in the coordinates x, y, Z,

and t are:

dt " (O+f)D + Ov + a. - Cy ,3 = 0, (2.1)

dt ax aZ ey OZ

dD Ou Ou +vv + 2u Ov owau
dt exex + y ay O ex ex OZ

+ + - f + -+ 2-- + 72( (=20
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dP-s MTS, (2.3)

dt

dT = Q. (2.4)
dt

In these equations:

is the vertical component of vorticity. = Ov:x - Bu, ay,
D is the horizontal divergence, D - Ou,'Lx + 4v '8y,

(p is the geopotential, (p = gZ,
Os is the surface geopotential,

T is the potential temperature,

u is the x-component of velocity,

v is the y-ccmponent of velocity,

w is the vertical velocity,

Q is the diabatic heating per unit time per unit mass,

NITS is the forced vertical velocity due to flow over mountain topography, which will

be discussed in Chapter III,

f is the Coriolis parameter,

is df'dy,

d( ) a( ) 0() 0() 0()1
- )+ u-+ vi - + w- , and
dt Ot x y 6Z

" is the horizontal Laplacian operator.
The prognostic equations are linearized by expanding the variables into their

mean and perturbation states, as in Jordan (1985). The resulting linearized forecast

equations are:

- D' d(2.5)

.14
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-r --- -- --

atZOt ' ySs- RTiw MTS',(."

OT ' _ OT ' Q , -T8
- = - m - v'- - -- +Q'. (2.8)
et v y

w:Cre R is the 2as constant for air, () denotes perturbation quantities and (-) denotes

mean quantities. The use of Xbar in the text will be used to denote mean quantities of

a variable X.

The diagnostic variables, u', v', w' and 4', are calculated from the forecast

variables using the definitions of divergence, vorticity, the hydrostatic equation and the

continuity equation. The relationships are given in equations 2.9 through 2.12.

Ou"
= D'. (2.9)

ev". : i. (2.10)
ax

e = RT'. 
(2.11)

Ox

D' + -0. (2.12)

The use of primes to denote perturbation quantities will be discontinued. All quantities

used ;n the remainder of the paper will be perturbation quantities unless otherwise

noted.

The mean state is assumed to be in hydrostatic and geostrophic balance. The

term OTbar .'8y in the first law of thermodynamics can be evaluated by taking 0 ,'y of

the hydrostatic equation and substituting for Ogbar /Oy from the geostrophic relation,

Ogbar -3- - f ubar. Thus,

15
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Gecstrophic balance of the mean state at the surface implies

__PS f (2.14)

The expressions (2.13) and (2.14) are substituted into equations (2.8) and (2.7),

respectively.

A singlewave spectral representation is used in the x-direction. with wave number

4 = 2n 'L, where L is the wavelength in the x-direction. The perturbation quantities

have the form:

;(x.Z,t) -Ap(Z,t) cosiix + A2 (Z,t) sinpix , (2.15)

D(x,Z,t) =D 1 (Z,t) cosg.x + D2 (Z,t) sing.x, (2.16)

T(x,Z,t) T1 (Z,t) cosgx + T2 (Z,t) singx , (2.17)

(p-.Zt S1(Z,t) cosgx +' S2(Z,t) sinpx , (2.18)

u(x,Z,t) -U 1(Z,t) coslix + U2(Z,t) singx , (2.19)

v(x.Z,t) -V 1(Z,t) cOsIAX + V2(Z,t) singx , (2.20)

16
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w(x.Z.t) - WI(Z.t) cosx + W2(Zt) sin.x, (2.21)

(x.Z.t) = HI(Z,t) cos.x + H2(Z.t) singx . (2.22)

Q(x.Zt) = Ql(Z,t) coslx + Q2(Zt) sin.x., (2.23)

.NITS(x.Z,t) = MTSI(Z,t) cosl±x + MTS2(Z,t) sinix. (2.24)

The relations (2.15) through (2.24) are substituted into equations (2.5) through

(2.12). The prognostic and diagnostic equations are separated into equations for the

cosine and sine terms. The resultant prognostic equations are:

JdBA I

t= -CD - A2 - V I  (2.25)

O fDA2  - 2 (2.26)
dt -f2 U9 u OtA

CD1 fA ! - CtiD2 - OUL1 - 9 d-W 2 + g 2 Hl, (2.27)
t T

OD2  d1_1

2 2 fA 2 + TgD 1 - 3U2 + +- W 1 + A2H 2 , (2.28)Ct d

Ot - +T + --- V I  WI + QI, (2.29)
CtR dZ OZ

17
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T-) f dff oil'
=- = g T + - d V2  W 2- + Q2. 2. 3)

UPS, + fV 1 - RTW1
,

e~t RTI+NTI(. 1

eS,

iPS 1 + f u- V,- RT'W2 + MTS2" 2.32)
Ct

The resultant diagnostic equations for u and v are:

U _D 2  2.3 3)

,j D I34)

V ~2.35)

V .) 1 -- - ,2.36)
- 4

Geopotential values above the surface are obtained by integrating the hydrostatic

equation from the surface (Z - Zo ) to height Z:

z
H I = R J Tl(Z,t)dZ + SI . (2.37)

zo

z
H, = R I T2(Z,t) dZ + S2 . (2.38)

zo

The vertical velocity is calculated by integrating the continuity equation from the top

of the atmosphere (Z = ZT) down to height Z. The upper boundary condition, w = 0

Fel18



at Z = ZT, is used. This boundary condition is not exact, but some form of it is used

in most numerical models. The diagnostic equations for the vertical velocity are:

z
'1 = J DI(Z.t) dZ, (2.39)

zo

z
W 2 = ) D2 (Z.t) dZ (2.40)

zo

Equations (2.25) through (2.40) are the prognostic and diagnostic equations that

govern all four numerical models. Using the given basic state and the one-wave spectral

perturbation quantities, the governing equations reduce to functions of Z and t. The

rnodes are effectively one-dimensional.
To display the results of each model, the sine and cosine amplitudes of each

variable are combined to determine the amplitude and phase of a single cosine wave in

tle x-direction. A typical variable has the form:

Y(x,Z,t) = A(Z,t) cos(gx- 6), (2.41)

wher.e the amplitude is A(Z,t) and the phase is &(Z,t). The amplitude and phase are

calculated at each level for all variables.

C. TIME DIFFERENCING

Two forward time steps are taken to start each model and then leapfrog time

differencing is used. The leapfrog scheme is employed because of its ease to code. A

Robert filter is used to reduce the amplitude of the computational mode generated by

the leapfrog time differencing. The filter is discussed by Haltiner and Williams (199-,

For a prognostic variable F, calculate Fbar n - 1' the average value of F at time stp

n- I)At, using equation (2.42).

Fn- I m Fn- I + y(Fn-2Fn_ l+Fn_21, (2.42)

where "/ is a weighting function. Using the unaveraged values at time step nat.

compute the tendency (OF,A)n from its predictive equation. The predicted value at

time step (n+ l)At is then calculated using equation (2.43).

19
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Fn+I = F- 24t(-')n•  (2.43)

In all the experiments, y = 0.05 is used. The time step for each experiment is

calcu!ated in the model by requiring, for computational stability,

11~vat = .(2.44)

where v = tc, and c is the typical phase speed of an external gravity wave.

D. VERTICAL GRIDS

Each of the models uses one of two vertical grids. The two ways used to
distribute the variables over discrete levels are depicted in Fig. 1. 1. The staggered levels

are represented by the dashed lines in Fig. 1.1. Notice that the heights at which the
* variables are defined change between the two grids. The notation used in this paper to

denote the staggered and unstaggered levels is consistent with the conventions used in

the coded models. The height of the unstaggered levels is denoted as Z'. The height of

tle staggered levels is denoted as Z. In the models, both Z' 1 and Z, are defined to be
the surface of the earth. It is assumed that the staggered level Zi is exactly in the

middle of the layer between Z'i. and Z' i. This distinction is important because the

models can have layers with unequal depth. Thus, the height of the staggered levels is

defined relative to the height of the unstaggered levels.

A finite difference model is written for each of the grid structures. The models
are denoted as FDM-A and FDM-B. Similarly, finite element models using the two

grids are indicated by FEM-A and FEM-B.

E. FINITE DIFFERENCE MODELS .

The only differences in the equations between the two FDM models are the
approximations of terms involving dubar, dZ and aTbar,'6Z in the prognostic equations

and the approximations of the integral in the diagnostic geopotential equation.

Centered difference approximations are used, except at the boundaries where one.sided

differences are employed. The finite difference approximations used in the prognostic

equations are listed in Appendix A.
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F. FINITE ELEMENT MODELS
1. FEM-A

The FEM-A model defines vertical velocity (w) at the unstaggered levels in

terms of the basis functions Wi(Z). The other variables are defined at the staggered

levels in terms of the basis functions q1(Z). The expansion for a typical term is

n~l

AI(Z,t) - A'1 (t) fpi(Z). (2.45)
i-1

The basis functions for this model are depicted in Fig. 2.1. The basis functions '(Z)
are defined for the unstaggered levels (solid lines at height Z') and the basis functions

(p(Z) are defined for the staggered levels (dashed lines at height Z).

Zn + - - - - - - (pn+ 1

z.n n
Zn ---- - - Vn

Z3 - - - - - - 0

Z 2  W2

z2 - - - - - -2

'1

Fig. 2.1 Basis functions for grids A and B.
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The finite element approximations for the vorticitv. divergence and
thermodynamic equations are derived by substituting the expansion for each dependent
variable into equations (2.25) through (2.30). Each equation is multiplied by pj(Z) and
integrated with respect to Z from the bottom to the top of the atmosphere. Each term
in the equations is the finite sum of separate integrals. Only the integrals of
overlapping basis functions are nonzero. The resultant equations, listed in Appendix
B. are matrix equations. For an N-layer model, the vectors, A1. A2, D1 . D2. H1 . Hi.

QI' Q2 ' TI, T2. UI, U2, VI, and V,, contain n+ 2 components. The vectors V 1. and
N2 contain n+ 1 components. The matrices M, K, and 0, defined below, are

(n -- 2) x (n +2) matrices. The matrix P. defined below, is an (n+ 1) x (n+2) matrix.

The mass matrix NI for this model is defined by

ZT

M.] = . (pj(Z) p.(Z) dZ for li-jl ": 1. (2.46)
Zo

The matrix K is defined for terms multiplied by U,

Si+ I ZT
K1i(TI) = ( Pt f pi(Z) (k(Z) (pi(Z) dZ for li-j ": 1. (2.47)

k=i- Zo

The matrix P is defined for terms multiplied by - W, or by - W,
dZ dZ

Pij(. Y -- I~x "Z d-' j(Z) Ti(Z) dZ for ji - j'SI . (2.48)
k-i-I Zo  dZ

where x - u, or T.

* da
The matrix 0 is defined for terms multiplied by T- V,
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i 1 ZT  di) i ZT Z d"dk 9P.(Z) wpi(Z) dZ for Ji- jl I . (2.49)

k=i- IZ 0  dZ I

The staggered basis functions present two general problems for evaluating the

elements of the four matrices. First, for an n-layer model, portions of basis functions

(pI Z) .nd -2Z) are defined in the model atmosphere but the physical meaning of
contributions from those terms is unclear. The contributions are included in the first

two rows ai-d th: last row of each matrix. Second. only portions of basis functions

p2kZZ) and (Pn" 1(Z) are defined in the model atmosphere. To describe the incomplete
sides of both basis functions an assumption must be made about the value of (PI at the

,u:', ace and v,1 +1 at the top of the atmosphere.

Assumptions are made and procedures are developed on an attempt to resolve

these problems. In this model the mean state variables. ubar and Tbar, are defined only
at the n staggered levels. However, ubar and Tbar values defined at the nodal points

of V1 (Z) and 9n+2(Z) are important in the Galerkin formulation of the dubar dZ and

eTbar ,Z terms. In these experiments, the values of ubar and Tbar are defined at the
surface and top of the atmosphere. Jordan (1985) did not define them at the nodal

points of 9 1(Z) and 9 n+ 2(Z). One of the major modifications of these experiments is

to define ubar and Tbar at the nodal points of t 1 (Z) and (Pn+ 2(Z). For constant
shear with height. ubar and Tbar are defined at the boundaries such that the shear in

the two hall' layers at the boundaries is the same as the shear in the other layers. To

evaluate the staggered basis functions defined in the layers between the surface and Z2 ,

and Zn -l and the top of the atmosphere, it is assumed that the value at the

boundaries of those basis functions is one-half. Thus, three-fourths of the basis

functions p ,(Z) and Tn + 2(Z) are defined in the model atmosphere.

The equations for the general elements of the four matrices are evaluated by
substtut:ng into equations (2.46) through (2.49) the formulas for (pi+ 1(Z), i(p, ' ,

- ) Wi+ I (Z), Wi(Z), i-I (Z), and W i_- 2(Z), in terms of the local coordinate

Z - Z i. The equations for these basis functions defined for the levels 1, 2, i, and

n + 1, are listed in Appendix C. The matrices were evaluated by integrating numerically

using 2 point Gausian Quadratures.

The vorticitv, divergence and thermodynamic equations, written in matrix and

vector forn-, are:
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Md. M(-fD - 13V 1) - K()A2,
dt (2.50)

M A 2= M(-fD 2 - V V2) + g K(U)A 1 ,dt (2.51.)

Md== M(fA 1 - 13 U1  ~t2HI) - ji K(u) D2 - Ai P(") W1 ,dt (.2

M d- D = M(fA 2 - 13 U2 + 42H2) + jt K(u) D1 - ji P(u) W-,
dt (2.53)

Mdi= -K(-u)T 2 + -Ocu)V 1 - P(T)W 1 + MQ1 ,

dt R (2.54)

ML'2== K(U) T + f V(U)V 2 - P(T) W2 + MQ2  (2.55)

Equations (2.50) through (2.55) are simplified by multiplying each equation by

M"1 and applying the Robert filter. Actually one should not compute the inverse of

M. Instead at t= 0 one should obtain the LU factorization of M. Thus at each time

step one only needs to forward and back solve a triangular system. The matrices

M- 1 K, M- 1 P, and M- 1 0 are constants. They are constructed in the initialization

subroutine and stored for use in the forecast subroutine. The matrices are multiplied

by the appropriate vectors with values for time level nat. The r,:sultant forecast

equations are vector equations and the forecast value for the i-th vertical level is the

sum of values in the i-th location of each vector equation. The prognostic equatifts

for the vorticity, divergence and potential temperature vectors are:

AI(n+ 1) Al(n- 1) + 2At (fDl - 1OVI - i.M'IK(')A 2)(n). (2.56)

A2(n + I) = A2(n - 1) + 2At ( fD 2 - f3V 2 + IgM'IK(-)A 1)(n), (2.57)
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Dl(n l) =D(n-1)

+ 26t (fAl-13U1 + u 2 H1 - 1M1'K(ThD 2 - aM'IP( )W2)[n), (2.5S)

(n+ 1) D(n-)

+ 2t f-- ~3, - 'H, - !iNIMK(U)D1 + I tM'lp()Wl)(n), (2.59)

T(ln+ 1 ) =Ti(n-l)

2t (N'IK(g)T, - R V - M'P(T)W1 + Ql)(n) ,  (2.60)

T2(n 1) = Tn- 1)
- M'P(T)W2 + Q2)n)' (2.61)

where the subscripts (n+ I), (n) and (n- 1) refer to the values of the vectors at time
step (n - l)At. ntt and (n- l)At, respectively.

The surface geopotential and the diagnostic variables are calculated using the

corresponding equations in model FDM-A (see Appendix A).

2. FEM-B

The FEM-B model defines vertical velocity, potential temperature, mean state
potential temperature and diabatic heating at the unstaggered levels in terms of the

basis functions Nj(Z). The other variables are defined at the staggered levels in terms

of the basis functions (pj(Z). The basis functions are the same as defined for the FEM-

A model, shown in Fig. 2.1.

The finite element approximations for the vorticity, divergence and
thermodynamic equations are derived by substituting the expansion for each dependent

variable into equations (2.25) through (2.30). The vorticity and divergence equations

are multiplied by pi(Z) and integrated with respect to Z from the bottom to the top of
the atmosphere. The resultant Galerkin formulation of the vorticity and divergence

equations are the same as those derived for model FEM-A. The matrices in those
equations, M, K, and P, are given by equations (2.46) through (2.48) as defined for

FEM-A. The thermodynamic equations are multiplied by Wi(Z) because potential
temperature is defined at the unstaggered levels. As before, the equations are integrated
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through the depth of the atmosphere. The resultant equations are listed in Appendix

D. Four additional matrices are defined for the two thermodynamic equations. The

mass matrix H is

ZTH. T = y(Z) Wj(Z) dZ Ior li-jB I . (2.62)

-o

The matrix r is defined for terms multiplied by ff,

, + I ZT
,i(U) = I -Uk I Wi(Z) (k(Z) yi(Z) dZ for i-Jl < 1. (2.63)

k=i- I Zo

Terms multiplied by -j V, give rise to the transpose of the matrix P, defined by (2.48).
I

dT

The matrix 'I is defined for terms multiplied by T W,

i + ZT
'ii(T) i Tk F T- (Z) Wi(Z) dZ for li-jl 1 . (2.65)

k=i-I Zo  dZ

As discussed in the FEM-A model description, the staggered finite elements

present problems for evaluating the elements of the matrices. In this model ubar is

defined at the surface, the top of the atmosphere, and at the n staggered levels. The

mean state temperature, Tbar, is defined at the unstaggered levels so special definitions

for it are not needed. Jordan (1985) did not include the contributions from the

perturbation quantities defined at the nodal points of p(Z) and (Pn+ 2(Z). They were

included in this model as part of the modifications of this experiment. The staggered

basis functions, pi(Z), are evaluated at the boundaries using the assumptions discussed

in the previous section.

The elements of matrices 1i, r, and ip are evaluated by substituting formulas

for Pi+ 2(Z), i+ I(Z), i(Z), Vi- (M, W IZ), Wi(Z), and Wi- (Z), defined in
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terms of the local coordinate = Z - Z i. into equations (2.62), (2.63). and (2.65).

Formulas for these basis functions are listed in Appendix C. As in FEM-A the

matrices are evaluated by integrating numerically using 2 point Gausian Quadratures.

The forecast matrix equations for vorticity, divergence and temperature are

simplified in a manner similar to the method described for model FEM-A. The final

form of the vorticity and divergence vector equations are the same as for model FEM-
A. equations (2.56) through (2.59). The thermodynamic vector equations are:

Tl(n+ 1) = Tl(n- 1)

+ 2At (+g-Ir(U)T2 + -fl-IpT(u-)V - i'l'(Ti)W 1 + Ql)(n), (2.66)

T2(n + 1) = T2(n - 1)
f

2At (-ji-I''r(cu)T + -l'pT(U)V2 - n'Iw(T)W 2 + Q2)(n) (2.67)S R

In this model the vectors. AI, A2 , D1 , D2 , HI, H2, U1, U2 , V1 , and V2 ,

contain n+ 2 components. The vectors Q1, Q2, TI, T2, WI, and W2 contain n+ I
components. The matrices 11, r, and T are (n+ 1) x (n + 1) matrices and the matrix
pT is an (n+ 2) x (n+ 1) matrix. The surface geopotential and the diagnostic

variables are calculated using the corresponding equations in model FDM-B.

@O
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II. EXPERIMENTS AND RESULTS

Four experiments are performed with each model; an initial perturbation in the
meridional flow. flow over mountain topography, flow with a diabatic heat source and
baroclinic flow with vertical shear in the ubar field. The first two and the last

experiments are performed with six- and then sixty-layer models. The heating

experiment is repeated with six-, twelve- and sixty-layer models. The analytic solution
of each experiment has not been derived. For each experiment, the sixty-layer model
results are intercompared to determine if the models are converging to the same

solution. The standard of comparison for each six-layer model is its corresponding

sixty-layer solution. Temperature and divergence profiles are examined in each

experiment.

Several parameters are defined identically in each experiment. The vertical
coordinate, Z is defined between zero and one (1000-368mb) and the vertical levels are

equally spaced. The x-wavelength is 4,000 kilometers. The time step is 17.7 minutes.

The Coriolis parameter is defined at 45 degrees latitude. The mean state potential

temperature increases with height from its surface value of 310.0 degrees K (Kelvin).

A. ROSSBY WAVE EXPERIMENT

Rossby waves are generated in each model using an initial perturbation, v" = 5.0

meters second (m's). in the cosine term of the meridional flow. All other perturbations
are initially zero. There is no diabatic heat source and no mountain topography. There

is no vertical shear in the ubar field and ubar = 10.0 nvs. The latitudinal variation of
the Coriolis parameter, 03, is defined at 45 degrees latitude. The forecast experiments

are terminated at 96 hours.

1. Sixty-Layer Models

The sixty-layer FDM-A, FDM-B, and FEM-B models converge to the same
. ~temperature and divergence solutions (Figs. 3.1-3.2). All figures will be found at the

end of the chapter. Note that the staggered models FDM-A and FEM-A are defined

as zero at their lowest level because this level is below the bottom of the atmosphere.
It should also be noted that the phase of each variable is defined between zero and 360

degrees. There is a discontinuity in the phase profile if the phase passes through zero

degrees. The height at which the temperature phase discontinuity in model FDM-A
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occurs differs from the other two models because temperature is defined at the

staggered levels in FDM-A. The three models represent the same physical solution.

which is called the consensus solution.

The FEM-A temperature amplitude is slightly smaller than the consensus

amplitude, 2'0 at height Z = 0.10 , and an amplitude oscillation is present in the
lowest three layers of the atmosphere. In the results of Jordan (1985) (Fig. 3.3(top)),

the FEM-A solution had a 32% difference from the consensus solution at height

Z = 0. 10 and a much more jagged profile in the lowest three layers of the atmosphere.
Jordan (19S5) felt that this jagged profile may be caused by the terms in the matrices

which represent contributions from the basis functions near the lower boundary of the

model. The FEM-A model is modified near the boundary to correct this problem. The

FEM-A temperature phase is within 0.1 degree of the consensus. It is high enough to
pass through zero one level above the consensus. The shape of the FEM-A divergence

amplitude is consistent with that of the consensus amplitude, however it is slightly

lower at the bottom and slightly higher at the top of the atmosphere. The consensus

divergence phase is nearly constant with height and the divergence phase profile for

model FEM-A is almost identical with the consensus profile.

In the results of Jordan (1985) (Fig. 3.3(bottom)) the FEM-B solution had a

5 0 difference from the consensus solution and a major oscillation in the lower layers

of the atmosphere. The FEM-B model is modified near the boundary to correct this

problem and is now part of the consensus solution (Figs. 3.1-3.2)

2. SLx-Layer Models

The comparison of six- and sixty-layer profiles for variables defined at

staggered levels may be initially misleading. The first staggered level in a six-layer

model occurs at Z = 0.0833. The lowest staggered level in a sixty-layer model is

defined at Z = 0.0083, which may be mistaken for the surface in the graphs. When tb,
values of a six-layer model coincide with a sixty-layer profile, the models are consider'-

to represent the same physical solution, even though the six-layer model has a smaller

vertical domain for staggered variables.

The temperature amplitude profiles of the six-layer models are very similar to

their corresponding sixty-layer results (Figs. 3.4-3.5). The previously discussed

problems in :he lowest three layers of model FEM-A are still slightly evident in the

lowest three layers of the six-layer profile (Fig. 3.5(top)). The six-layer profile of the

FEM-A model is nevertheless a very good approximation of the consensus profile.
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The six-layer divergence amplitude profiles .for the grid A models approximate

their sixty-layer counterparts in a similar manner (Figs. 3.6(top)-3.7(top)). And the

six-layer divergence amplitude profiles for the grid B models approximate their sixty-

layer counterparts in a similar manner also (Figs. 3.6(bottom)-3.7(bottom)). The grid

4, B models more closely approximate the sixty-layer consensus profile in the lower half

of the atmosphere and the grid A models more closely approximate the sixty-layer

consensus profile in the upper half of the atmosphere. The six-layer profile of the

FEM-A model is the closest of the four in their approximation of their sixty-layer

counterparts and the sixty-layer consensus profile (Fig. 3.7(top)).

B. MOUNTAIN TOPOGRAPHY EXPERIMENT
The forced vertical velocity term, MTS, in the surface geopotential forecast

equation (2.3) is non-zero in this experiment. It represents the contribution to surface

geopotential from air flowing over mountain topography which varies sinusoidally in

the x-direction and has no variation in the y-direction. The mountain ridge-to-valley
height difference is 1,500 meters. To reduce the trauma for the model, the mountains

are gradually "built" to their full height over a period of 36 hours. Thus, the forced
vertical velocity increases in the first 36 hours of the forecast period and is constant for

:he remainder of the 96-hour forecast period. The equations used to define the forced
vertical velocity are included in Appendix E. There is no vertical shear in the ubar field

and ubar - 10.0 m,'s. 03 and all other initial perturbations are zero in this experiment.
1. SLx't'-Layer Models

The FDM-A, FDM-B, and FEM-B models converge to the same physical

solution for temperature and divergence (Figs. 3.8 and 3.9).
The FEM-A temperature amplitude is again slightly smaller than the

consensus amplitude (2%) and a small oscillation is again present in the lowest three

layers of the atmosphere. The FEM-A temperature phase and divergence ph-..
solutions are exactly the same as the consensus solutions. The FEM-A divergene

amplitude is only very slightly lower than the consensus amplitude at the bottom of the

atmosphere (0.5% ) and is indistinguishable from the consensus profile by Z = 0.20.

Jordan (1985) found that the temperature amplitude of the unmodified FEM-A model
was 30% higher than the consensus near the bottom of the atmosphere (Fig.~3.10(top),) and that the divergence amplitude of the unmodified FEM-A model was

h;igher at the bottom of the atmosphere and lower at the top of the atmosphere than

thconsensus (Fig. 3. l0(bottom)).
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Jordan (1985) again found a jagged temperature amplitude profile in the

unmodified FEM-B model in the lowest two layers of the atmosphere (Fig. 3.1 I(top))

and the temperature amplitude was 5% more than the consensus near the surface. The

unmodified FEM-B temperature phase profile was jagged in the lowest three layers and

top two layers of the atmosphere while the rest of the profile was within one degree of

the consensus (Fig. 3.1 l(bottom)). The modified FEM-B profiles are now part of the

consensus in every case for this experiment (Figs. 3.8 and 3.9).

2. Six-Layer Models

The temperature amplitude profiles of the six-layer models F DM-A, FDM-B.

and FEI-B are identical with each other and also with the consensus solution (Figs.

3.12(top) and 3.13(bottom)). The slight oscillation in the lowest three layers of the

FEYI-A model is still slightly evident in the six-layer model (Fig. 3.13(top)), however
the six-layer model profile is still very close to the consensus profile (Fig. 3.12(top)).

The six-layer divergence amplitude profiles are very close to the sixty-layer

consensus (Figs. 3.14 and 3.12(bottom)). Both of the six-layer finite element model

divergence amplitude profiles are closer to the sixty-layer consensus divergence

amplitude profile than the FDM-A profile (Figs. 3.14 and 3.15)

C. DIABATIC HEATING EXPERIMENT

A diabatic heat source is defined in the layer between Z = 0.40 and Z = 0.60

(670-549mb). The rate of heating is constant in time and varies in x and Z,

Q(x.Zt) = HEATING cos2 ( Z -'* it ) cos(tgx). (3.1)
Z1 -ZL

where HEATING is 5.0 K/day, ZN is the midpoint of the heated layer, and ZL and Z,,

are the lower and upper boundaries of the heated layer, respectively. The diabatic

heating vectors, Q, and Q2, are defined in the initialization subroutine and stored for

use in the forecast subroutine. There is no vertical shear in the ubar field and ubar

10.0 m s. 0 and all other initial perturbations are zero in this experiment. The forecast

length is 96 hours, however, a 12-hour forecast is made for comparison with Jordan

Sc(1985).

1. Sixty-Layer Models

For the diabatic heating function defined in equation (3.1), the maximum

heating occurs at Z = 0.50, the midpoint of the heated layer. The models defined
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using grid B define temperatur" and the heating functions at this point. The grid A

models do not have temperature and diabatic heating defined at this point so zhe

maximum rate of heating in these models is slightly less than in the other rnodel'. ,ind

nhe maxim-n heating occurs throughout one laver rather than occuring at one point.

The hcating rate at each level is listed in Appendix F for the six-, twelve- and si.t\-

'aver models.

The sixty-la.er profiles for the four models are quite sinlar, the differences
occur mainly because the models are responding to different forcing. The temperature

amp'itude profiles for the B grids come to a sharp point at Z - 0.50 and the grid A

models have a square-nosed profile around this point (Fig. 3.16top)). The previously

identified temperature amplitude oscillations in the lowest layers of models FEM-A and

FEM-B were not evident in the unmodified models (Jordan, 1985) (Fig. 3.17) and are

not evident in any of the modified models (Figs. 3.16(top)). This is because the heating

is defined far enough away from the boundaries so that the previous problems with the
basis :unctions at the bottom and the top of the atmosphere do not show up here.

'Note that there is a jagged profile at the bottom and top of the heated layer in the

twelve hour forecasts because they are not steady state yet. In summary, the sixty-

layer temperature profiles of all four models represent the same physical response to

the diabatic heating.

The shape of the divergence amplitude profile is not symmetric around

Z = 0.50 because divergence is not defined exactly at the midpoint of the heated layer

in either of grids A or B (Fig. 3.18(top)). The divergence amplitude is identical outside
the heated layer for all models except FEM-A which was also true at 12 hours with the

unmodified models (Jordan, 1985). (Fig. 3.19(top)). The divergence phase profiles are

virtually identical for all models in this experiment. Jordan (1985) found that the

divergence phase for the unmodified FEM-A model at 12 hours was slightly different

from the consensus outside the heated layer (Fig. 3.19(bottom)). The modified F EM-A

model profile at 12 and 96 hours is exactly the same as the consensus profile (Figs. 3.20

and 3.1S(bottom)).

2. Six and Twelve-Layer Models

The difference between grids is more evident in this experiment than in the
other experiments. Each model is run with both six and twelve layers and the results

-re compared with the sixty-layer consensus of the four models.
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The six-layer grid A model temperature and divergence amplitude fields barely

respond to the diabatic heating (Figs. 3.21(top) and 3.22(top)). The grid A models are

only about 6%4 of the amplitude of the grid B models. Comparing the maxlmunm

diabatic heating terms for the two grids, in Appendix F, it is found that the maximum

heitir.2 in the grid A models is only about 6% of the maximum heating in the grid B
models. This is because heating is defined to be greatest at the midpoint of the heated

hiver and decrease as you get away from the midpoint. Grid B defines heating at the
rnaxlmui. or midpoint and grid A deflnes heating at points equidistant from the
midpoint. As the number of layers gets smaller the distance between the midpoint and

,." the first layer in grid A which is used to define heating increases, thus decreasing the
value of the heating that goes into the layer.

The grid A models have a stronger response to heating with twelve layers than
with six layers because with twelve layers heating is defined closer to the maximum at

the midpoint of the heated layer (Figs. 3.21-3.22). The six- and twelve-layer models
converg- to the sixty-layer profile equally well for the finite element models as for the

finite difference model for grid B (Figs. 3.23 and 3.24). For grid A the twelve-layer

divergence amplitude is closer to the corresponding 60 layer profile for the finite

element than for the finite difference model (Fig. 3.25) but the finite difference twelve-

layer profile is closer to the consensus (Fig. 3.26).

D. BAROCLINIC INSTABILITY EXPERIMENT

Vertical shear in the ubar field is defined in this experiment. The wind profile is a

linear function of Z, with ubar = (STRGTH) Z, where STRGTH defines the strength
of the wind at the top of the atmosphere in m's. In this experiment STRGTH is
defined as .40 ms. Waves are generated in each model using an initial perturbation,

= 5.0 m s in the cosine term of the meridional flow. 0 and all other perturbations
are initially zero. There is no diabatic heat source and no mountain topography. Ihe

*forecast experiments are terminated at 96 hours.

I. SLxty-Layer Models

The sixty-layer FDM-A, and FDM-B models converge to the same solution

for the temperature amplitude, temperature phase, divergence amplitude and divergence

phase (Figs. 3.27 and 3.28).

The FEM-A model shows a slightly higher temperature amplitude than the

consensus profile but the shape is the same as the consensus profile. The same

problem is evident for the divergence amplitude profile but the magnitude of the error
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is smaller. The FEM-A model shows no sign of the oscillation that is evident near the
surface in the Rossby wave experiment and the mountain topography experiment.

This may be because the ubar field is almost zero near the bottom of the atmosphere
where Z is small which cancels out the problem with the basis function that may be
causing the oscillation in the other experiments. The FEM-A model profile is almost
identical with the consensus for temperature phase and identical with the consensus
profile for divergence phase.

The FEM-B model profile shows a lower temperature amplitude than the
consensus profile and the shape is the same except for a small oscillation that occurs in
the lowest three layers of the atmosphere. This oscillation is not evident in any of the
other experiments. For divergence amplitude, the amplitude is lower than the
consensus profile, but there is no oscillation in the lower layers of the atmosphere and
the magnitude of the error is smaller, as it is for the FEM-A model. The FEM-B
model profile is further from the consensus profile than the FEM-A model profile for
temperature phase but it is still very close (Fig. 3.29). The profiles for divergence

phase are identical for all four models (Fig. 3.28(bottom)).

2. Six-Layer Models
In the six-layer case the FDM-A, FDM-B, and FEM-A models all seem to

converge to the same solution, but the FEM-B profile is off in the temperature
amplitude and the divergence amplitude (Figs. 3.30 and 3.31) although the pattern is
similar. The phase profiles for all four six-layer models are very close to the sixty-layer
consensus. The FEM-A six-layer model profile for temperature amplitude is closer to
the sixty-layer consensus than the FDM-A six-layer model and slightly better than the
FDM-B six-layer model (Fig. 3.32). The temperature amplitude profile oscillation in

4 the lowest layers of the FEM-B sixty-layer model is evident at Z - 0.3 in the six-layer

model (Fig. 3.33). The reason for this oscillation is unclear, but it should have
* something to do with the basis functions near the boundaries.
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Fig. 3.1 Sixty-layer Rossby wave experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase

profiles (bottom) are compared.
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Fig. 3.2 Sixty-layer Rossby wave experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase

profiles (bottom) are compared.
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Fig. 3.4 Six-layer Rossby wave experiment at 96 hours.
Temperature amplitude profiles are compared for the six-layer
and sixty-layer FD.M-A (top) and FD.M.. (bottom) models.
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Fig. 3.5 Six.layer Rossby wave experiment at 96 hours.
Temperature amplitude profiles are compared for the six-layer

and sixty-layer FEM-A (top) and FEM-B (bottom) models.
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Fig. 3.6 Six-layer Rossby wave experiment at 96 hours.
Divergence amplitude profiles are compared for the six-layer
and sixty-layer FDM-A (top) and FDM-B (bottom) models.

40



DIV. AMP. V=5 CASE (FEM-A)

* LEGEND6 LAYERS

0

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
DIVERGENCE AMPLITUDE (I/SEC -160'

DIV. AMP. V--5 CASE (FEM-D)

0.

P LEGEND
6 LAYERS

.0 LAY:ERS ....

II
.0

U0.

10.0 12.5 15.0 17.5 t0.* 22.5 25.0 27.5
DIVERGENCE AMPLITUDE (1/SEC)10

Fig. 3.7 Six-layer Rossby wave experiment at 96 hours.
Divergence amplitude profiles are compared for the six-layer
and sixty-layer FE.M-A (top) and FEM-B (bottom) models.
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Fig. M. Sixty-layer mountain toposraphy experiment a, 96 hours.

Temperature amplitude profiles (top) and temperature phase
profiles (bottom) are compared.
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r Fig. 3.1i Sixty-layer mountain topography experiment at 96 hours from Jordan (1985).
Temperature amplitude (top) and phase (bottom) profiles are compared
for models FEM.B and FDM-C, which represents the consensus profile.
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Fig. 3.12 Six-layer mountain topography experiment at 96 hours.
Temperature amplitude profiles (top) and divergence amplitude

profiles (bottom) are compared.
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Fig. 3.15 Six-layer mountain topography experiment at 96 hours.
Divergence amplitude profiles are compared for the six-layer

and sixty-layer FDM-A model.
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Fig. 3.19 Sixty-layer diabatic heating experiment at 12 hours from Jordan (1985).

' Divergence amplitude (topj and phase (bottom) profiles are compared
' for models FEM-A and FDM-C, which represents the consensus profile.
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Fig. 3.20 Sixty-layer diabatic heating experiment at 12 hours.
divergence phase profiles are compared for models FEM-A

and FDM-A, which represents the consensus profile.
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Fig. 3.21 Six-layer diabatic heating experiment at 96 hours.
Temperature amplitude profiles (top) and temperature phase

profiles (bottom) are compared.
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Fig. 3.25 Twelve-layer diabatic heating experiment at 96 hours.
Divergence amplitude profiles are compared for the twelve-layer

and sixty-layer FDM.A (top) and FEM-A (bottom) models.
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Fig. 3.26 Twelve-layer diabatic heating experiment at 96 hours.
Divergence amplitude profiles are compared for models FDM.A. FDM.B. FEM-A,

* FE.M-B and sixty-layer FEM-B, which represents the consensus profile.
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Fig. 3.28 Sixty-layer baroclinic instability experiment at 96 hours.
Divergence amplitude profiles (top) and divergence phase

profiles (bottom) are compared.
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I Fig. 3.33 Six-laver baroclinic instability experiment at 96 hours.
~~~~~~~Temperature amplitudean pit-rorfiles -are compared lor the six-laver
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IV. CONCLUSIONS

The modification of the finite element models with the inclusion of the basis

functions near the boundaries (q1 (Z) and 9n+ 2(Z)) completely fixed the FEM-B

model in the experiments that can be compared with the results of Jordan (1985). The

modified FEM-A model is much better when compared with the results of the

unmodified model, however the unusual temperature amplitude behavior in the lowest

layers of the model are not totally gone after the modifications. The theory of Jordan

(1985) that the oscillation in the temperature profiles of both unmodified models is

generated by matrix elements which represent the contributions from the basis

functions near the surface, is well supported by the results of the modified models.

There is still some question as to how to define terms at or below the bottom of the

atmosphere and a change in the definition of those terms may fix the small oscillations

that are evident in the FEM-A model in the Rossby wave and mountain topography

experiment.

The finite element models display a better convergence to the sixty-layer

consensus than the finite difference models in many of the cases and in the other cases

they are the same.

Jagged temperature profiles are not observed in the diabatic heating experiment

in either the modified or the unmodified (Jordan, 1985) models. This may be because

the heating is defined far enough away from the boundaries that the previous problems

associated with the boundary terms are not significant. The FEM-A model has a

slightly different sixty-layer divergence amplitude response outside the heated layer

than the other models. The differences between grids is most apparent in th

experiment. The differences may be caused by the difference in the maximum amplitu,;W;

of the heating defined for the different grids. The results may be much closer if the

maximum heating were to be set equal for both grids. This is supported by the fact

that the sixty-layer profiles of all four models represent the same physical solution.

0'0 Both of the finite element model results differ from the consensus results for the

baroclinic instability experiment for temperature and divergence amplitudes. The FEM-

A model difference is probably a manifestation of the problems observed in the Rossby

wave experiment and the mountain topography experiment. There is an oscillation and
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a difference from the consensus in the baroclinic instability experiment for the FEM-B

model which may also be caused by the definition of terms at or below the bottom of

the atmosphere. In future studies the temperature on the boundary in the FEM-B

model should be included in the forecast field. This may improve the behavior for the

baroclinic experiments, where the surface temperature is very important.
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APPENDIX A
FINITE DIFFERENCE APPROXIMATIONS

1. For terms of the form - W
/.' dZ

a. FDM-A and FDM-B, at level Z =Z.:

=G I ui jj .- cri -)+ W u i -..1 (
dZ i I iz iI

2. For terms of the form T~. W

a. FDM-A at level Z = i

dT w=I(i (- Ti+ I- Ti i T - Ti

b. FDM-B at level Z =i

dT w= I wiY T 1+ I Ti Ti -T
dZ 2 Z' 1 I-T ' -Z...I

3. For terms of the form- V:

a. FDM -A, at level Z =i

0-V = I V( U+I i ) + uI Ui1

b. FDMN-B, at level Z ='i

V -(Vi+ + li)dz 2 zi,4- -Zj
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APPENDIX B

GALERKIN FORM OF FEM-A PROGNOSTIC EQUATIONS

I Vorticity Equations (2.25) and (2.26):

SdAJlZ il
dv t i (pi dZ- -f_- D T1 Z iidzid i-  zo 1 Z

i-sl i+I
-~ - A. Vk (pk E A2 T~qkdZ

k=i-I j=i-I Zo
i+lI

Vg ' vJ SZTqp. 9. dZA- ~Z ( 1 p
j (B. I)

i+ I dAJ Z i
2 - Zo(pj m idZ- -f_ DI2 SZo q(dZ

1 =i-1d t  ji o -

i'- I i+ 1 .
_4 1- k x SZo (pi Tk (Pi dZ

k=i-I j ='i- 10

+ ZT- 13E v2 fZ
j=i-I 0 (B.2)

Note that in these equations, and the equations that follow, the basis functions

are functions of Z (9i = Vi(Z) and Wi= Ji(Z)). All of the other variables, A, D, H,

Q, T, u, U, V, and W, are functions of time ( Ai - Ai(t), Di - Di(t), Hi = Hi(t),

Qi = Qi(t), Ti = Ti(t), u - u(t), Ui = Ui(t), Vi = Vi(t), Wi = Wi(t) ).
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2. Divergence Equations (2.27) and (2.28):

1+ dD I1 f ZT (p Z = f iT jVid

i4- 1 +4-I z
~- -ky Di -JTjkid

k=i-I j i -1 0

i+1 1

-0 L~jI ZT (j(id

i+1- i+L1PdPpdZ
.k Wj 2 J ZTd W Vk d

-~k=i-1 j 2 z0 dZ J 1 pZ

i+i+1
+ -12 dD1

2  Tq =p f diJT.,d

0 (B.30

i4-I i+I
+ ~ S'5k Z uT

DJ z (Pj (k(pi dZ
k=i-1 j=i-I 0

-1: T' Z(Pj (pi dZ,
ji- 0

i+1 i+1
-u I JkZw dZ J(p1d

k=i-1I j=i-1

i+1 1
+V I ~2 Ii -JT j9dZ

z0 P(PZ.(B.4)
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3. Thermodynamidc Equations (2.29) and (2.30):

't ~Z (P(id

- jL +1 i+1 Td

ki -1I j = i-1 0

+ - F -U y ; j V- f T (Pk j idZ

R k=i-1 j=i-I o d

i~-H i-H d(Pk

k=i-1 j= i -1

j4- I Jz VVid

+3Q] 0z(iPd (B5)

i+1 dT1
2 ZT

dt . Vj Vp1 dZ=
j i1 0

i+1 i+1 TVY T1  z IlkkPi dZ
kI -1I j=i- 1 0

j - i+1
+ V -k VI TO

Rki.. ~ 2 Jz dZ Tj VdZ 
a

- 1 - i" l Z5 wiJTk

kIl 2~-

1 0 ( .6
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APPENDIX C
BASIS FUNCTION EQUATIONS FOR FEM-A

1. Notation:

Ai i Zi-i

z - i

2.For the general case:

(pa) A- I i5(Aj 6i 0 2 2

.5a -i -~ A -

5(6i+ A' 02 2

for any i sufficiently far from the boundaries, 3 :5 i :5 n.

*for 2Si S n.loj 3. For special cases, 4pl T~29 4Pn to wV--2' Wit~ Wn+ I

*4 
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S+ 1.5A 2=p a- A2 <5 - .5 a''2

- , .2

; - + .5a"3
=~ . ( ' -_ . .2 < , _< . 3

+ A'3)

+ A'2

.5(A'2 + -A'n) 2 2-+ 5A' n+ l - '~

n + 1

+ .,- -2 (5) = : 5 + 5-'n + !

A'n+ 1
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APPENDIX D
GALERKIN FORM OF FEM-B PROGNOSTIC EQUATIONS

1 . The vorticity equations have the same form as the vorticity equations for model

FEM-A, equations (B.1) and (B.2).

2. The divergence equations are the same as the divergence equations in model FEM-

A, equations (B.3) and (B.4).

3. Thermodynamic Equations (2.29) and (2.30):

idT 1
1 jZT

dt ~Z W J Wi d
0

- + i+I Zu TJ T 2 Sz W P i
k-i - I j -i - o

f +1 +
+ -E -k VulZT !XVTi

R =1 I j=i-i I 0od

i4-l -k i4-l Z

k=i-I j i - 1 Z0 dZJ

i+I
+ QJ ZTW id
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i+ I dTJI ZT"- f T j~idZ =
j= -1dt -Zo

i+ T i+ l ZT

k=i-I j=i-I

f i+Il i+l jZT d
+- Y -- Vi2 T M J T i d Z

Pk='-L j i-I Z

i+l i+l
- T .E wj2 fzdik WidZ

k=i-I J=i-i 0 dZ

i+l

j=0 0 (D.2)

Note that in these equations the basis functions are functions of Z (4pi = 4pi(z )

and Wi = Wi(Z)). All of the other variables, Q, T, u, V, and W, are functions of time

(Qi = Qi(t), Ti = Ti(t), u - u(t), Vi - Vi(t), W i - Wi(t) ).
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APPENDIX E
FORCED VERTICAL VELOCITY

1. The contribution to the surface geopotential from the forced vertical velocity is ts,

tps(xt) = om sin 2(nt,2T) sin (gx) t < T

= Tm sin (Ax) t > T, (E.l)

where IPm is mountain geopotential (m 2is 2 ), t is time, and T is the total time to build

the mountain. Tm is a constant,

(Pm-- gHrim (E.2)

* where g is gravity and Hm is the height of the mountain. Hm is a parameter specified

in each model. Hm = 750 meters in the thesis experiments.

2. The time rate of change of Is is separated into sine and cosine components for use

in the surface geopotential forecast equations,

drns
d MTSI(t) cos (.ux) + MTS2(t) sin (gx), (E.3)

dt

d a a
where -= - + Usfc

Equation (E.1) is substituted into equation (E.3) and the resultant expression is

separated into sine and cosine equations. The equations to calculate the terms MI f.'.

and MTS 2 are

MTSI(t) M Usfc Im g sin2 (0t'2T) t S T

M Usfc 9 m .9 t > T, (E.4)

and
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MTS,(t) = sin (nt.'2T) cos (nt'12T) t :5 T
-T

-o0 t >T. (E-5)

These terms are calculated for each time step in the model's forecast subroutine.
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APPENDIX F
DIABATIC HEATING TERMS

For the diabatic heating function defined in equation (3.1), the maximum heating

occurs at Z = 0.50, the midpoint of the heated layer. Temperature and diabatic

heating are defined at the staggered levels for grid A, and at the unstaggered levels for

grid B. Consequently, the rate of heating differs between the staggered and

unstaggered models. In these experiments, the heated layer is between Z =0.40 and

Z = 0.60, the heating rate is 5.0 K, day, and only the cosine term, Q1 , is nonzero in the

heated layer. The value of the heating term is listed below for staggered and

unstaggered levels for six-, twelve- and sixty-layer models.

Grid A Six-Layer Models Grid B Six-Layer Models

Z QIZ

0.250 0.OOOOOOE +00 0.333 0.OOOOOOE +00

0.417 0.387657E-05 0.500 0.578704E-04

0.583 0.387668E-05 0.667 0.OOOOOOE +00

0.750 0.OOOOOOE +00

Grid A Twelve-Layer Models Grid B Twelve-Layer Models

Z QIZ
0.375 0.OOOOOOE + 00 0.33 3 0.OOOOOOE + 00

0.458 0.364241E-04 0.417 0.387657E-05

0.542 0.364243E-04 0.500 0.578704E-04

0.625 0.00000E + 00 0.583 0.387668E-05

0.667 0.OOOOOOE +~ 00

Grid A Sixty-Layer Models Grid B Sixty-Layer Models
z IZ Q1I0.392 0.00000E + 00 0.400 0.00000E + 00

0.408 0.985885E-06 0.417 0.387660E-05
0.425 0.847474E-05 0.433 0. 144676E-04

0.442 0,214459E-04 0.450 0.289351E-04

0.458 0.364238E-04 0.467 0.43402SE-04

0.475 0.493952E-04 0.483 0.53993SE-04

s0

Ijfj 
0



0.,92 0.56S843E-04 0.500 0.578704E-04

0.508 0.568845E-04 0.517 0.539938E-04

0.525 0.493957E-04 0.533 0.434028E-04

0.542 0.364246E-04 0.550 0.289352E-04

0.558 0.214466E-04 0.567 0. 144677E-04

0.575 0.84"529E-05 0.583 0.387665E-05

0.592 0.9S6071E-06 0.600 0.929893E-16

0.608 0.OOOOOOE + 00 0.617 O.OOOOOOE + 00

i
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